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Abstract

The SKA Costing and Design Tool provides a framework in which
hierarchical descriptions of telescope designs can be built and costed
as a function of input parameters and telescope performance. The tool
allows engineers and astronomers to rapidly explore the possible pa-
rameter space of SKA designs, probe the cost vs. performance tradeoffs
which affect them, and ultimately produce optimised designs for the
SKA. In this memo, we describe how the costing tool works and show
screenshots of its graphical user interface.
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1 Introduction

Intrinsic to the design of any telescope are trade-offs between cost and scien-
tific performance (see, e.g., Gaensler and Lazio, 2006). In the design of the
Square Kilometre Array (SKA), these trade-offs will be unusually complex,
for two reasons. Firstly, its design will have an unusually large number of
free parameters: there will be many design choices to be made in addition
to the familiar considerations of sensitivity and survey speed. For exam-
ple, it will use a hybrid of detector technologies co-existing side-by-side –
both the International SKA Project Office1 (ISPO) Reference Design (ISPO,
2006; Schilizzi et al., 2007) and the SKADS Benchmark Scenario (Alexan-
der et al., 2007; Bolton et al., 2008) favour a three-component hybrid of
phased aperture arrays, dishes with wide-band feeds and either close-packed
aperture arrays or phased-array feeds (PAFs) – and the frequency coverage
and collecting area of each component must be decided upon. Within the
back-end processing for the aperture arrays, the choice between digital and
analogue beam-forming remains to be made; Alexander et al. (2007) argue
that even if one becomes the favoured option, the other should be developed
in parallel for the foreseeable future to provide a realistic fallback alterna-
tive. Within the dish-based collectors, issues such as the dish size and feed
type remain to be finalised.

The second source of complexity in the SKA’s cost-performance trade-
offs is the multi-faceted nature of its science programme (see, e.g., Gaensler,
2004; Jones, 2004). Its prospective users each place different requirements
upon the SKA’s angular resolution, survey speed, sensitivity and frequency
coverage, and a compromise will have to be reached (see, e.g., Jackson, 2003,
2006).

Whilst the ISPO Reference Design and the SKADS Benchmark Sce-
nario documents have presented and discussed in detail a range of manually-
optimised skeletal designs for the SKA, it is clear that more immediate access
to cost estimates and scientific simulations of telescope designs will be essen-
tial before engineers can make significant progress in charting the available
parameter space. To this end, the SKA Costing Tool has been developed on
behalf of the SKA Program Development Office (SPDO) and in part as work
package DS3-T3 of the SKADS programme. This tool acts upon telescope
designs which are described in a hierarchical fashion, in which large design

blocks – for example, the whole SKA – subdivide into smaller units – for
example, SKA Stations – until eventually the hierarchy reaches components

– indivisible atomic units. One possible view of how this hierarchy might
appear is shown in Figure 1. The tool can calculate the number of compo-
nents required to build any given design block, propagate costs through this

1The International SKA Project Office is now the SKA Program Development Office
(SPDO).
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The SKA
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Figure 1: A simplified example of how the top of a hierarchical telescope
design might appear as a network of design blocks; this example is based
loosely upon the structure of the SKADS Benchmark Scenario (Alexander
et al., 2007).

hierarchy to sum up to total cost of any given telescope design, and provide
a breakdown of the contributions of each design block to the total cost. In
addition, the tool can also propagate other arbitrary quantities through the
hierarchy, including, for example, the power consumption of components
and their data rates. The former is useful for calculating the total power
requirements of the SKA, meanwhile the latter is an unusual case, where
data processing steps can reduce the total data flow to their parents.

A key feature of the Costing Tool is that the hierarchical telescope de-
signs which it acts upon are scalable; they do not represent a single telescope
built to a particular specification, but rather take a wide range of input
parameters, and within reasonable limits, can estimate what components
would be required to build a telescope to any requested specification. This
does not replace the need for specialist engineers: the calculations performed
by the tool are estimates based upon simple models, which would need to
be extensively expanded upon before they could actually be built. In the
first instance, our aim is to produce realistic models of how the cost of the
SKA will scale with design parameters, not to produce accurate absolute
costings.

The Costing Tool builds upon the work of its predecessor, SKAcost,
which was developed by the Australia Telescope National Facility (ATNF),
with some financial support and system engineering input from the ISPO.
SKAcost, which itself used the modular approach first described in Horiuchi
et al. (2004), was also a hierarchical tool which could estimate component
costs as a function of purchase date for dish-based SKA designs (Chippen-
dale et al., 2007; Schilizzi et al., 2007). In addition, a variant version of SKA-
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cost has been developed by the ATNF for their studies of the cost vs. per-
formance trade-offs for the Australian Square Kilometre Array Pathfinder
(ASKAP). SKAcost was written in Python and two user interfaces were de-
veloped for it: experienced Python programmers were encouraged to modify
parameters directly within its Python code, giving them essentially unlim-
ited scope to explore parameter space, meanwhile an online CGI-based web
interface provided a more user-friendly way to access it, although only a
selected subset of parameters could be varied using it. The tool provided
uncertainty analyses based on simple statistical modelling and reports in a
variety of financial formats, including Net Present Value summaries.

The new Costing Tool greatly improves upon the user-friendliness of
SKAcost and seeks to make its calculations as transparent as possible. It
aims to provide all of the flexibility which was available to SKAcost’s techni-
cally-minded users, in an interface which is at least as user-friendly as SKA-

cost’s web-based interface. Within the Costing Tool, the hierarchical struc-
ture of telescope designs can be interrogated in a graphical environment, as
can the cost breakdown between the various parts of the hierarchy. Tele-
scope designs can also be modified in this graphical environment, and, in
the case of simple modifications, no programming experience or knowledge
of Python is required. More complex modifications, including the build-
ing of entirely new telescope designs, are possible with a basic knowledge
of Python: small fragments of Python code need to be written to instruct
design blocks how to calculate their resource requirements from any given
set of inputs. Significant effort has been put into making this process as
user-friendly as possible. The development of the Costing Tool is ongoing
and will continue throughout the PrepSKA programme, during which time
it will be extended and coupled to technical simulations of the SKA.

2 The Structure of the Costing Tool

Within the Costing Tool, we maintain a sharp division between the costing

engine – the software used to calculate the numbers of components needed to
build an SKA to a particular specification – and the telescope designs which
it acts upon. This separation ensures that telescope designs can be modified
by engineers without exposure to the lower-level Python implementation of
the cost calculations; it also ensures that cost calculations are performed in
a homogeneous way between all design blocks, since they must all use the
same costing routines. In addition, the costing engine is separated from the
user interfaces which it uses to communicate with the user and with the
outside world. This structure is illustrated in Figure 2.

Three user interfaces to the Costing Tool are currently available. It is
anticipated that most users will use the graphical interface on account of
its user-friendliness. Some users with scripting experience may prefer the
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Figure 2: A diagram of the modular structure of the Costing Tool. The
costing engine is separated both from the telescope design models it acts
upon, and from the interfaces with which it communicates with the user
and with other software packages. This means that the user is able to
modify telescope designs without detailed knowledge of how the costing
engine works, and that experienced programmers can use the Costing Tool
from within the programming language of their choice.
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commandline interface, which provides a similar degree of flexibility to the
graphical interface. Finally, more experienced programmers may wish to
use the Costing Tool directly from within Python, where they will be able
to develop their own independent user interfaces to the tool, specialised
for their own particular requirements. In view of the sophistication of the
new tool, there is currently no web-based interface to match that which was
available for SKAcost, and we envisage that users will run the graphical user
interface on their own local machines.2

As Figure 2 indicates, the Costing Tool can also be accessed by other ap-
plications via socket-based inter-process communication, which means that
other design optimisation tools can query live cost estimates for designs
from the tool. As a proof of this concept, a SKADS tool is under devel-
opment which will optimise the cable and trenching layouts between SKA
stations. It will communicate with the Costing Tool to obtain information
about the fibre cost model, and will communicate results back into the cost
calculations.

As well as the division which we draw between telescope designs, the
Costing Tool engine and its user interfaces, we also divide up telescope
designs into separate sharply-divided blocks. Each design block within a
telescope design hierarchy is a black box: it takes a defined set of inputs from
its parent design blocks, operates on them in some way which other design
blocks need not be concerned with, and then returns a defined set of outputs.
This information flow is illustrated in Figure 3. This approach means that
the various design blocks in a telescope design can be efficiently written
by a variety of different engineers working at different institutions, each
bringing their own specialist expertise to their own particular areas. Because
each block is a black box, each can straightforwardly be re-implemented in
the light of new information or expertise, without changing the rest of the
telescope design around it. Within the Costing Tool, it is straightforward
to swap one design block for another within a telescope design, to obtain a
rapid comparison of the costs calculated by different models.

In addition, the Costing Tool makes it easy to re-use components and
design blocks in many different places in a hierarchical telescope design if
they are designed to take a sufficiently general set of inputs that they can
be used in several different situations.

3 Cost Modelling

The Costing Tool has a variety of features for modelling the way in which
costs scale with purchase date and for modelling the uncertainties in the
prices of goods.

2The Costing Tool is known to run under Microsoft Windows, Mac OS X and Linux.
It is believed to run under all other POSIX-compliant operating systems.
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Design Block

(1) Orders received from parent
design blocks.

(1) Configurable parameters are
set by the user.

(2) Orders are sent to child
design blocks.

(3) Costs and other resource
requirements are sent to the user
and back to parent design blocks.

Figure 3: A diagram of the data flow which takes place within design blocks.
First of all, in Step (1), the design block receives orders from all of the parent
design blocks which make use of it, together with some user-configurable
parameters. The design block then, in Step (2), computes how many child
design blocks are needed to fulfill these orders, sends orders through to
child design blocks, and calculates any additional “glue” costs which are
associated with putting these sub-components together. Finally, the design
block returns its total resource requirements – not just cost, but also power
consumption and any other arbitrary attributes which the user wishes to
propagate through the hierarchy – to the user and to its parent design blocks.
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3.1 Cost Scaling

In general, the costs of telescope components vary over time: for example,
the prices of support materials may rise following inflation, meanwhile the
prices of computational hardware may fall following Moore’s Law. Since the
SKA will be built over an extended period of time, with investment in dif-
ferent parts of the telescope infrastructure at different times, it is important
to take account of these scalings, and we now describe how the Costing Tool
models them.

For each component, an estimated reference cost c0 is specified, together
with the year t0 for which this cost estimate is being made. An indication
of the uncertainty in the cost is also specified: for example, this could be
a statement that the cost lies somewhere between two limits, but that no
more accurate information is available, or it could be a statement that the
cost has a certain mean and standard deviation. In general, the user can
state that the probability distribution function of the cost has one of four
possible shapes, as shown in Figure 4. Wherever possible, these costs are
accompanied by references, to give an indication of their source and degree of
reliability. In some cases, the reference may merely state that the cost given
is a guess; ideally they will take the form of quotes from manufacturers.

These reference costs are accompanied by an estimate of how they are
expected to scale with time. In many cases, the expectation will be that
they will follow either inflation or Moore’s Law, both of which are pre-
programmed as power laws into the Costing Tool, although the user is free
to define his own scaling relations. When a telescope design is found to
require the purchase of a component in some particular year t1, the reference
cost is scaled from the year t0 to t1 using the stated scaling relation.

One key benefit of the separation of telescope designs from the costing
engine within our tool is that cost scalings are performed in a homogeneous
fashion across all parts of a telescope design. As an example of the practical
use of this, if the user wanted to assess how sensitive his cost estimates were
to the continuation of Moore’s Law over the next decade, then he could do
so by changing the power-law slope of Moore’s Law within the costing engine
to represent a more pessimistic forecast. This would affect all components
which depended upon Moore’s Law in a homogeneous and self-consistent
fashion.

3.2 Net Present Values

In addition to the change in the prices of components over time, currency
units also change in value: purchases which cost the same number of euros,
but in different years, do not represent the same amount of material expen-
diture. To first approximation, credit crunches being neglected, currencies
devalue in line with inflation.
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Figure 4: Components include an indication of the uncertainties in their
costs. The user has a choice between (a) stating that the component’s cost
lies somewhere between a pair of lower, a, and upper, b, limits, and most
probably around c; (b) stating that there is negligible uncertainty in the
cost; (c) stating that the cost has a known mean x and standard deviation
σ; or (d) stating that the cost could lie anywhere between a pair of lower,
a, and upper, b, limits. For each case, the probability distribution function
for the cost is shown.
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Figure 5: A schematic view of how the Costing Tool models the time evolu-
tion of component costs. For each cost component, an estimated reference
cost c0 is supplied for a reference year t0, together with information about
the uncertainty in this estimate. Ideally this reference cost will be based
upon a quote from a manufacturer. Additionally, some indication is sup-
plied of how this cost is predicted to scale with time. When this component
is purchased in some chosen build year t1, this scaling law is used to estimate
the cost c1 of the component in that year, as shown in Panel (a). Finally, if
the user chooses, all purchase costs are then reported as net present values
c2 in a given reference year t2 – that is, the amount of money which is needed
in a bank account in that reference year to make the required purchase at
a later date, taking into account the interest paid on money invested in the
bank. To do this, all purchase costs are scaled back to this reference year
using the discount rate, as shown in Panel (b).

At present, the Costing Tool offers the capability to report all costs as
net present values (NPVs), which are defined to be the amount of money
which would hypothetically need to be held in some given reference year,
such that a telescope could be built over an extended period of time, as-
suming that those funds which have not yet been spent are invested and
accrue interest until they are needed. In Figure 5, we show how the costs
of the components which make up the SKA are converted into NPVs. This
matches the accounting procedures followed by SKAcost, and allows for an
easy comparison between the output of the two tools.

However, because NPVs do not represent the way in which funding bod-
ies are likely to allocate resources, we will provide a range of accounting
procedures in future versions of the tool. In the meantime, we offer a single
alternative, which is to simply return costs as summed expenditure.

3.3 Modelling Uncertainties in Cost

Within telescope designs, each individual component stores information
about the degree of uncertainty in its cost and other resource requirements.
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Central to the Costing Tool is the ability to assess how these uncertainties
propagate through into the final cost of the SKA.

To obtain a single cost estimate for the SKA, or for a design block, a
single sample is taken from the probability distribution for the cost of each
of its constituent components. These samples are taken in such a way that
if one particular component appears many times in a hierarchy, the same
sample is used every time, since these purchase costs are not independent
random variables. To build up a picture of the probability distribution for
the cost of the SKA, this process is repeated many times, and the samples
used to construct a histogram. This approach has the strength that it makes
no assumptions about the forms of the probability distributions for the costs
of individual components. While the standard error combination formula3

provides a faster way of propagating uncertainties, it assumes that the prob-
ability distributions are all Gaussian. The central limit theorem states that
this will be the case when many independent probability distributions are
added together, but this is not necessarily true of the cost of the SKA, which
may be dominated by the purchase of large quantities of a small number of
different components.

The resulting probability distribution for the total cost of a design block
can be returned to the user as either a mean and standard deviation, or as
a full plotted histogram.

4 The Structure of Telescope Designs

In Section 1 we outlined how telescope designs break down into a hierarchy
of design blocks and components. In this section, we outline in more detail
the data which is stored in each of these components and design blocks, and
how they interact with one another.

4.1 Components

We use the term component to refer to the atomic elements in telescope
designs which do not break down into any smaller sub-components; they
form the leaf nodes of the hierarchy. They usually represent material com-
modities which can be purchased from a supplier, but may also be used to
represent expenses which are harder to quantify such as that of a man-hour
of manual labour. In simplistic telescope designs, components may also be
used to assign pre-determined place-holder costs to particular parts of the
telescope design before they are modelled in any further detail. Components
contain the following information:

3That is, adding all of the uncertainties in the cost components in quadrature.
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4.1.1 Costs

Each component has two costs associated with it. The first is a one-off
development cost, which is incurred only once, if the component is used
anywhere in a telescope design. The latter is a per-unit manufacture cost,
called its unit cost, which is incurred every time it is built. As described
in Section 3.1, each of these is specified as a reference cost, estimated for a
specified reference year, and must be accompanied by an estimate of how
the cost will evolve with time.

4.1.2 Power Consumption

It is also possible to specify the power consumption of a component, to-
gether with its uncertainty, allowing the Costing Tool to estimate the power
consumption of SKA designs and of each of their constituent stations. In
the future, we will develop telescope designs which feed this data back into
their cost calculations to give an indication of the power infrastructure and
component cooling that they require.

4.1.3 Textual Documentation

In addition to providing numerical data, the authors of components are
expected to provide textual documentation to make clear what their com-
ponents represent physically. They are expected to provide an indication
of the reliability of the prices that they quote – for example, whether they
are guesses or whether they are based on quotes. They are also encouraged
to provide, insofar as they are not commercially sensitive, direct references
to quotes from manufacturers, together with an indication of the current
state of development of the technology being proposed for purchase. One
indication which component authors may use is the ten-point technology

readiness level (TRL) scale developed by NASA, which indicates the state
of a research and development (R&D) programme – whether it is a product
which is already shipping, a product which has been prototyped, or whether
it is yet to even reach that stage of development.

In order that users may know where to direct enquiries about the com-
ponents used in telescope designs, authors of components are also required
to provide their name and contact details.

4.1.4 Specifications

Machine-readable meta-data may be attached to components in the form
of specifications. Components may have any number of specifications, each
having a unique name, a value, and optionally, a physical unit. Parent de-
sign blocks can query the specifications of child components in the course of
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ordering them, and make use of the values in their calculations. Specifica-
tions can contain any information which is relevant to the component, and
may take the form of numerical values which are intended to be machine-
read by parent design blocks, or take the form of textual information which
is intended purely for human readers of the component definition.

4.2 Design Blocks

We use the term design block to refer to elements of hierarchical telescope
designs which are larger than components, and which are made up of smaller
parts which are modelled by other components and design blocks.

4.2.1 Simple Shopping Baskets

To illustrate what design blocks are, we begin by considering a simple toy
example, which we will call CabledTrench. This represents a communications
link which requires a trench to be dug and five cables to be laid into it. We
will measure the cost of this design block per unit metre; for each metre
that is purchased, it needs to order one metre of trench and five metres
of fibre.4 We term this kind of design block a shopping basket: it doesn’t
perform any detailed calculations; it simply groups a set of items together.
This grouping together is achieved by specifying that the design block has
two children – a term that we use to describe the sub-components and sub-
design-blocks which need to be purchased in order to put a design block
together. Our example design block might contain the following information
about its children:

Child 1
ImplementationDB: Comms A Trench
UnitQuantity: 1

Child 2
ImplementationDB: Comms A1 Fibre
UnitQuantity: 5

The field UnitQuantity specifies the number of units of each child which
should be ordered for each unit of CabledTrench which is bought. The field
ImplementationDB specifies the name of the child design block or component
which is to be bought in each case.

The four pieces of information above represent essentially all that is
required to build a shopping basket design block, although, as with compo-

4For the purposes of this toy example, we will neglect considerations such as the need
for repeater stations, etc.
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nents, we also expect design block authors to provide some textual informa-
tion about who they are and what their design blocks physically represent.

4.2.2 More Advanced Design Blocks

Many design blocks can be modelled as simple groupings of items to make
shopping baskets which can be ordered just like components, by specifying a
quantity and a purchase year. However, in order to make a useful telescope
design it will be necessary at some point to write some high-level design
blocks which take more physically interesting inputs of the kind that users
are apt to supply – for example, system temperatures and desired band-
widths and sensitivities. These design blocks must implement models to
convert these inputs into quantities of parts which need to be ordered.

To write design blocks which are more complicated than the shopping
baskets met in the previous section, it is necessary to write a few lines of
Python code to perform the calculations required to implement such models.
In this section we will give a flavour of this process, to show that only a basic
knowledge of programming is required to implement simple models. We will
assume that the reader has a basic understanding of Python syntax, or else
has Guido van Rossum’s online Tutorial (van Rossum, 2008) to hand; users
who are not interested in these details may safely skip onto the next section.
This memo is not the place for a complete tutorial in how to write design
blocks; readers looking for a detailed guide should turn to the Costing Tool
Users’ Guide (Ford, 2009).

From the point of view of a design block author, the Costing Tool can
be seen as a mechanism for passing messages between design blocks. When
one design block orders another, a message is passed from the buyer to the
block which is being bought. In the previous section, this message passing
was taking place behind the scenes: one design block could specify that it
needed some others to be bought, and the purchasing happened invisibly
without any further intervention from the user.

Messages take the form of Python dictionaries. Simple orders, of the
kind being generated by the shopping baskets in the previous section, take
the form of messages containing only two fields – the number of units to be
purchased, and the year in which they are to be purchased, for example:

message = {’quantity’ : 1,

’purchase_year’: 2012

}

Shopping baskets and components only accept messages containing these
two inputs; if they receive a message containing additional fields they return
an error to alert the user that they are not able to understand the informa-
tion supplied to them. When more complicated design blocks are written, it
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is possible to specify a list of the inputs which they are permitted to receive,
and the range of values which each are allowed to take.

Each time a design block receives a message, the tool first checks that
all of the message’s fields are valid inputs to the design block, and then it
executes a Python code fragment which is supplied as a part of the design
block’s definition5, passing it the received message. The code fragment has
access to various function calls which allow it to order child blocks and access
other core tools within the costing engine. If necessary, the code fragment is
also allowed to use the Python import command to make use of any of the
standard Python modules. As the Python developers have included a rich
array of plug-in modules as standard with the language, many common tasks
can be automated with library routines. For example, the re module can
be imported to provide an efficient implementation of Regular Expressions,
or the pyfits module can be imported to provide a reader for datafiles in
fits format.

In this document we will look at only one of the functions to which these
code fragments have access: the SendMessage() function, which is used to
send orders to child design blocks. Its calling syntax is:

SendMessage(Name, quantity, year, ExtraInputs={})

The first argument, Name, should be set to the name of the design block
to which the message should be sent. To send a straightforward order to
a component or shopping basket, the fields quantity and year should be
set respectively to the number of units of the child to be ordered, and the
year in which they should be bought. The field ExtraInputs is only used
when ordering child design blocks which take their own special inputs: in
this case, the additional data fields which are to be sent to the child should
be placed in this dictionary.

As an example, the following is a null code fragment: it implements
a shopping basket which behaves in the same way as if no Python code
fragment had been supplied at all. We show it, despite its uselessness, to
demonstrate how few lines of Python code need to be written to make simple
interactions with the costing engine:

1 for ChildName in ListOfChildren.keys():

2 SendMessage(ChildName,message[’quantity’],

message[’purchase_year’])

3 outputs[’NumberOfUnits’] += message[’quantity’]

Line 1 starts a loop over all of the design block’s children: ListOfChildren
is a dictionary which the costing tool passes to the code fragment, whose
keys are the names of each of the design block’s children. On each iteration

5If no code fragment is supplied, then the design block acts as a shopping basket by
default.
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of this loop, the variable ChildName takes one of these names in turn. In
Line 2, we send an order to each of these children, reading the number of
units to be bought and the purchase year from the dictionary message sent
to the design block from its parents.

Finally, in Line 3, we update the dictionary outputs which the code
fragment uses to return output information back to the costing tool. In this
case we update a field called NumberOfUnits to count the total number of
purchases of this design block which have been made.

As an example of a more typical design block code fragment, the fol-
lowing implements a simple model of a close-packed array of aperture array
antennae:

1 spacing = message[’Antenna_Spacing’]

2 height = message[’Aspect_Ratio’ ] * spacing

3 quantity = message[’quantity’ ]

4 date = message[’purchase_year’ ]

5 SendMessage(’LNA’ ,quantity, date)

6 SendMessage(’Filter_Regulator’,quantity, date)

7 SendMessage(’Antenna_Passives’,quantity, date)

8 SendMessage(’Feed_Board’ ,quantity, date)

9 SendMessage(’element_material’,spacing*height*quantity,

date)

10 SendMessage(’Ground_Plane’,spacing*spacing*quantity,date)

11 outputs[’NumberOfUnits’] += quantity

This design block takes four inputs: the number of antennae in the ar-
ray (quantity), the spacing between them, the ratio of their height to
their spacing (Aspect Ratio), and the year in which they are to be bought
(purchase year). Each antenna element requires the purchase of a low
noise amplifier (LNA), a filter/regulator, some passives and a feed board (see
Lines 5–8). The total area of element material required is the product of
the antenna spacing, the height of each antenna, and the total number of
antennae (see Line 9). The total amount of ground place material required
is the product of the number of antennae and the square of the antenna
spacing (see Line 10).

4.3 Telescope Designs

Telescope designs bring together collections of components and design blocks
to make complete telescope systems. Each contains a list of the names of
all of the blocks which comprise the telescope design, the name of the top-
level block which represents the whole telescope, and the values of all of the
inputs which should be passed to this top-level design block by default.

They also contain a system design block database (SDBD), which we
have introduced to make it as easy as possible to swap design blocks for
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alternative implementations. To illustrate the need for this, we return to
the CabledTrench example which we described in Section 4.2.1. Imagine that
a colleague were to pass you a design block called CabledTrench Bob. The
first thing that you would be likely to want to do would be to plug Bob’s
design block into a standard telescope design in place of the old CabledTrench

design block, to see how it changed matters.
However, you wouldn’t want to have to change every reference to Ca-

bledTrench to CabledTrench Bob in the telescope design. The SDBD is the
mechanism we use to make such changes easy. When this design block is or-
dered, the purchase is propagated through to the Trench child design block.
However, the tool does not immediately go off and look for a design block on
disk called Trench. First of all, it looks in the design block’s list of children,
where it finds a mapping from the local name of Trench – used internally
within the design block – to an implementation name. By switching the
implementation name in the design block’s list of children, we can make
it look for different children without modifying its Python code fragment,
which exclusively refers to children by their local names.

A second layer of dereferencing occurs in the SDBD. The implementation
name of the desired child is then mapped by SDBD to the name of a design
block on disk. By changing the relevant entry in the SDBD, we can make
all design blocks with children of a common implementation name read a
different design block from disk. This architecture is illustrated in Figure 6.

5 The Costing Tool Example Telescope

To demonstrate the use of the Costing Tool in practice, it is necessary to
have a telescope design for it to act upon. The process of putting together
complete and realistic telescope designs in the tool will require extensive
consultation with expert engineers throughout the SKA community, which
we have not yet begun. In the meantime, we have developed an Example

Telescope, which is loosely based upon the Benchmark Scenario from the
Second SKADS Design and Costing Memo (Bolton et al., 2008). This design
is not intended to serve any purpose other than as an example, and is not
presented as a fully-costed SKA design. The presentation of plausible costed
telescope designs built using the Costing Tool is deferred for future memos.

For reference, the Example Telescope consists of 250 mid-frequency aper-
ture array stations, each 24m in radius, 250 low-frequency aperture array
stations, each 82m in radius, and 2,480 dishes, each 15m in diameter. It
lacks any model of the correlation or computational hardware, for which
arbitrary placeholder costs are used.
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Parent Design Block

Design block orders 5 units of Trench. . .

Child 1

LocalName:

Trench

Implementation:

Trench A

System Design Block Database

Database Entry

Implemention of...

Trench A

is called...

Trench A1

Child Design Block

Name:

Trench A1

Figure 6: A diagram of the mapping of design block names, using the ex-
ample design block CabledTrench from Section 4.2.1. Within parent design
blocks, child blocks are referred to by local names – in this case, Trench.
The design block’s list of children map each local name to an implementa-

tion name. These are in turn mapped to the names of design blocks on disk
by the telescope design’s system design block database.

6 The Graphical User Interface

In this section, we use the Example Telescope to demonstrate the Costing
Tool’s graphical user interface. To emphasise that the Example Telescope
is not a complete design for the SKA, and that its cost does not represent a
good cost estimate for the SKA, we have chosen to display all design block
costs in a ficticious currency which we have called the SKA Accounting Unit
(SAU); its value roughly matches the cost of the whole SKA.

When a telescope design is opened within the graphical interface, all of
the components and design blocks which make it up are listed in a spread-
sheet, as shown in Figure 7. Once the telescope has been built, this spread-
sheet also displays the quantities of each block which were required to build
the telescope in the chosen configuration. The column cumulative cost shows
the total amount spent on each block, including the cost of any child blocks
further down the hierarchy which were required to make them up. The
column intrinsic cost is similar, but does not include the cost of the child
blocks, and hence it shows only the costs which are uniquely associated with
each block. The sum of all of the values in this column equals the total cost
of the telescope design – in this case, 0.887 SAU. This spreadsheet can be
exported to a CSV file for examination in external software packages.

The graphical interface also allows components and design blocks to be
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browsed in a hierarchical display, giving a rapid visual sense of how they fit
together. The hierarchy of blocks which make up a low-frequency aperture
array station in the Example Telescope is shown in Figure 8. The user is
able to click on blocks in the hierarchy to display information about them
or to navigate around the telescope design, expanding and collapsing nodes
along the way.

In Figure 9, we have gone back to a spreadsheet view, and chosen to
display information about the top-level SKA design block. In keeping with
the notation above, the panel total cumulative cost of design block shows
the total cost of the selected design block, including money spent on child
blocks, meanwhile the panel total intrinsic cost of design block shows only
the costs which are uniquely associated with it. The latter can be thought
of as the glue cost associated with putting the child blocks together. Below
this panel, the cost break-down box shows what percentage of the cumulative
cost of the design block is spent on each of its child blocks.

At the bottom of the display is an indicator to show the details of the
telescope system which is currently built, for which costs are currently being
displayed. In Figure 10 we expand this panel to show some of the top-level
input parameters which the Example Telescope takes.

In all of the panels shown so far, quantities with uncertainties in their
values have been displayed with stated standard deviations. However, it is
also possible to plot full probability distribution functions (PDFs) for any of
these values, to check for non-Gaussianity in their probability spread. These
plots are produced via a Monte Carlo approach: many random samples
are taken and put into bins. A smoothed cubic spline is fitted through
the probability densities calculated for each of the bins to aid the eye in
following the trend. In Figure 11 show an example PDF for the total cost
of the Example Telescope. The black crosses are the probability densities
calculated for each of the individual bins, and the grey curve is the smoothed
fit through the noisy datapoints.

In Figure 12 we demonstrate the strength of using scalable telescope
designs in the tool – i.e. telescope designs which take many input parameters
and which can build telescopes to a range of specifications using simple
scaling models. In this simple example, we request the tool to make a
one-dimensional parameter survey of how the cost of the SKA scales with
the desired sensitivity of the dish component of the array, by building 12
sample telescopes along a line in phase space. On this plot, the horizontal
axis measures the requested sensitivity of the dishes, in units of m2/K,
meanwhile the vertical axis measures the most likely cost of the SKA. The
cost of the SKA rises when the desired sensitivity is increased because a
larger collecting area is required, which in turn means that more dishes are
required.

In Figure 13, we show the graphical interface’s editor for changing com-
ponent and design block definitions.



7 SUMMARY 20

7 Summary

We have constructed a tool which allows the user to construct hierachical
telescope designs in a graphical environment, and which can then propa-
gate costs, power consumption, data rates, and other arbitrary quantities
through these hierarchies to evaluate the total cost of any given telescope.
In due course, we envisage that we and the SKA Program Development
Office (SPDO) will work in collaboration with specialist engineers to pro-
duce a range of reference telescope designs within this framework. Over the
course of the PrepSKA programme, we also plan to link the Costing Tool
into technical simulations of the SKA’s science performance.

This work is supported by the European Community Framework Pro-
gramme 6, Square Kilometre Array Design Studies (SKADS), contract num-
ber 011938.
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Figure 7: A spreadsheet of all of the components and design blocks in the
Example Telescope Design. In this figure, we have chosen to sort the blocks
in order of their cumulative cost, so that the most expensive block, the whole
telescope, appears at the top. Further details are in the text.
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Figure 8: The hierarchy of design blocks which are required to build an
AAlo Station. Where strings of blocks appear in vertical lists, all of the
blocks in the list are children of a common parent above, but they are too
numerous to be displayed horizontally.
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Figure 9: Summary information about the top-level SKA telescope design
block. On the left, the tool lists the parent design blocks which have sent
orders to it: in this case there is only one order, sent from root, that is, the
user. On the right, the tool lists the break-down of the design block’s total
cost between its various children.
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Figure 10: A spreadsheet showing the input parameters which were used in
the latest telescope to be built. Also listed are the information sources from
which each of the parameter values were drawn.
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Figure 11: The tool can display the probability distribution function (PDF)
for the cost of any component or design block, based upon random samples
drawn from it. In this case, we show the PDF for the total cost of the SKA
as measured in our ficticious currency, the SAU; the vertical axis is measured
in units of probability density per unit SAU.



7 SUMMARY 26

Figure 12: A parameter survey of the cost of the SKA in SAU as a function of
the desired sensitivity of the dish component, measured along the horizontal
axis in m2/K.
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Figure 13: The Costing Tool’s design block editor, here editing the
AAlo Station design block. The left panel shows the design block’s defi-
nition, including a list of its inputs. In the right panel, we have opened the
Bits Per Sample input, to show that it is measured in physical units of bits,
and that its default value is 4 bits per sample.
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